Relation between rotational and translational dynamic heterogeneities in water.

نویسندگان

  • Marco G Mazza
  • Nicolas Giovambattista
  • Francis W Starr
  • H Eugene Stanley
چکیده

We use molecular dynamics simulations to probe the rotational dynamics of the extended simple point charge model of water for a range of temperatures down to 200 K, 6 K above the mode coupling temperature. We find that rotational dynamics is spatially heterogeneous; i.e., there are clusters of molecules that rotate significantly more than the average for a given time interval, and we study the size and the temporal behavior of these clusters. We find that the position of a rotational heterogeneity is strongly correlated with the position of a translational heterogeneity, and that the fraction of molecules belonging to both kinds of heterogeneities increases with decreasing temperature. We further find that although the two types of heterogeneities are not identical, they are related to the same physical picture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Damage Assessment of RC Buildings Subjected to the Rotational Ground Motion Records Considering Soil-Structure Interaction

The significance of the seismic rotational components have been overlooked in the seismic evaluation of structural behavior. As researchers have measured seismic components more accurately using sensitive rotational velocity sensor, it was observed that the magnitude of rotational components is considerable and could not be neglected. Hence, some parts of seismic damage or failure of structures...

متن کامل

Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.

We study the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, Dt=kBT/6pietaR and Dr=kBT/8pietaR3, where Dt and Dr are the translational and rotational diffusivity, respectively, T is the temperature, eta the viscosity, kB the Boltzmann constant, and R the "molecular" radius. Our results are based on molecular dynamics simulations of the extended simple point charge model of w...

متن کامل

Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid.

We study the breakdown of the Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) relations for translational and rotational motion in a prototypical model of a network-forming liquid, the ST2 model of water. We find that the emergence of fractional SE and DSE relations at low temperature is ubiquitous in this system, with exponents that vary little over a range of distinct physical regimes. W...

متن کامل

Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water

The violation of the Stokes-Einstein (SE) relation D ~ (η/T)-1 between the shear viscosity η and the translational diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of η. We provide comprehensive simulation results of the...

متن کامل

Evolution from surface-influenced to bulk-like dynamics in nanoscopically confined water.

We use molecular dynamics simulations to study the influence of confinement on the dynamics of a nanoscopic water film at T = 300 K and rho = 1.0 g cm(-3). We consider two infinite hydrophilic (beta-cristobalite) silica surfaces separated by distances between 0.6 and 5.0 nm. The width of the region characterized by surface-dominated slowing down of water rotational dynamics is approximately 0.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 2006